
For most developers, myself included,
addEvent() remains in their library
because it is a widely recommended

cross browser solution that “just works.” And
while it ’s usually a safe bet to follow the cod-
ing practices of those you admire, it ’s always
worth questioning the origin and reasons for
the existence of a function like addEvent() to
find out where (if anywhere) something could
be improved.

Due to the increasing popularity of JavaScript,
developers have been searching for methods
that efficiently separate structure (XHTML)
from behavior (Client Side Scripting). Since
this practice eliminates obtrusive code, it be-
comes necessary to find a way to attach events,
such as onclick(), to elements in the Document
Object Model. In 2001, a widely accepted so-

lution was proposed by Scott Andrew LePera,
and has been use by thousands of sites across
the Internet. However, LePera’s addEvent()
was neither the beginning of event handling,
nor does it seem to be the end.

Identifying The Problem

We’ll start our journey with a review of the
basic form of event handling. Event handling
is the process of adding events to elements,
and it can be done inline or unobtrusively.
An inline event handler looks something like
this:

<a href=”somepage.html” onclick=”execute

Function()”>Click Me!

When the user clicks on the link, the onclick

event fires, which triggers executeFunction().
And we could create the same effect unobtru-
sively by writing only in the JavaScript:

element.onclick = executeFunction;

Basically, when the element is clicked by the
user, executeFunction() will fire. This ap-
proach works fine, except for one major draw-
back—each element may have only one event
attached to it. So, if you wrote the following
script:

element.onclick = executeFunction1;

element.onclick = executeFunction2;

Both functions would not be executed in this
scenario. In fact, the last function attached
to the element is the one executed, and any

Catching Up
with addEvent()

C o d e

D i s C u s s

B y R y a n C a m p b e l l

http://treehousemagazine.com/catalog/treehouse-nov-2005/#comments
mailto:ryan@particletree.com

previous assignments are ignored, which becomes par-
ticularly inconvenient for situations where program-
mers want to execute multiple functions at window.
onload().

If you have two separate script files (a common practice
with unobtrusive JavaScript), one of those files would
overwrite the actions of the other. This is obviously
unacceptable, since the inability to run multiple func-
tions on an event prevents the developer from creat-
ing resuable code files—one of the major reasons for
separating structure from behavior in the first place.

W3C Steps In

Given the deficiency mentioned above, in addition
to more issues that will be introduced later, the W3C
introduced the EventTarget interface in the DOM
level two specifications, which described a very use-
ful method called addEventListener(). Using this rec-
ommendation, unobtrusive event handling transforms
into the following syntax:

element.addEventListener(“click”,executeFunction, false)

The method takes three parameters: the event, the
function to be triggered, and a boolean representing
useCapture. While this recommendation was exactly
what was needed by the community, it was unfortu-
nately introduced a bit too late. Prior to this, Micro-
soft already noticed the problem and implemented
their own method.

Implemented before the W3C DOM working group
honed the standard event model, the attachEvent()
method is available for every HTML element object
in the Windows version of IE5 and later.

Supporting Three Event Models at Once – ADC

Microsoft’s method is called attachEvent() and it
usedsa similar syntax. The first parameter is the event
to listen for, and the second the function to trigger
when the event is successfully fired. The method can
be called as shown below:

element.attachEvent(“onclick”,executeFunction);

While both attachEvent() and addEventListener() are
similar in concept, there are three differences to note:

• attachEvent() expects the event parameter to come from
the DHTML Event List in which each event is preceded
by “on.” With addEventListener(), this is handled oppo-
sitely, so onclick becomes click.

• The third parameter in addEventListener(), boolean
useCapture, is absent in Microsoft’s rendition of the
function.

• Different function names for different browsers
means that object detection becomes required.

Catching Up With addEvent()
B y R y a n C a m p b e l l

Treehouse
�

Event Registration :
For a more detailed explanation
of why events override one an-
other, I’ll refer you to Peter-Paul
Koch’s article on the Traditional
Event Registration Model.

http://developer.apple.com/internet/webcontent/eventmodels.html
http://msdn.microsoft.com/workshop/author/dhtml/reference/methods/attachevent.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/events.asp
http://www.quirksmode.org/js/support.html
http://www.quirksmode.org/js/events_tradmod.html
http://www.quirksmode.org/js/events_tradmod.html

addEvent() is Born
An attempt to consolidate the difficulties associated with event listen-
ers into one simple function spawned the first version of addEvent(),
written by Scott Andrew LePera. In Crossbrowser DOM Scripting:
Event Handlers, he addresses the three associated problems with event
listeners and creates a function that is easy to implement, handles object
detection, and comes partnered with a complimentary removeEvent()
function. Here’s the code in full:

function addEvent(obj, evType, fn, useCapture){

 if (obj.addEventListener){

 obj.addEventListener(evType, fn, useCapture);

 return true;

 } else if (obj.attachEvent){

 var r = obj.attachEvent(“on”+evType, fn);

 return r;

 } else {

 alert(“Handler could not be attached”);

 }

}

After checking to make sure the object exists, this function appends
“on” to the event and additionally sets useCapture if it is applicable.
Another benefit of this function is that it funnels event handling
through one function, so any tracking or resource management can
be done from within. Unfortunately, no IE support for useCapture is
possible through this version.

Problems Arise
The introduction of a cross browser unobtrusive solution to an ac-
cepted problem gave addEvent() a wide range of recognition. So much
recognition that it is still being passed on as the de facto solution
almost five years later. While the function deserves all of the credit
given to it, there is still one limitation involving the this keyword. The

this keyword is a reference to the currently active object. An example
of using this with inline JavaScript looks like this:

Click Me!

function executeFunction(ctrl) {

 ctrl.style.display = “none”;

}

When the link is clicked, it is passing this, which can be thought of
as passing itself to the function to be modified like any other DOM
element. This can also be handled unobtrusively:

element.onclick = executeFunction;

function executeFunction() {

 this.style.display = “none”;

}

Note that you can directly use the this keyword in the unobtrusive ex-
ample—it does not need to be passed to the function. Peter-Paul Koch
provides an informative article covering this very concept in The this
Keyword.

So what does the this keyword have to do with addEvent()? Well, ear-
lier this year, Peter-Paul Koch published addEvent() considered harm-
ful, in which he presented a test case showing how Internet Explorer’s
attachEvent() fails to maintain the this keyword. So, if you were to
execute this script:

addEvent(element, “click”, executeFunction);

function executeFunction() {

 this.style.display = “none”;

}

Catching Up With addEvent()
B y R y a n C a m p b e l l

Treehouse
9

http://www.scottandrew.com/weblog/articles/cbs-events
http://www.scottandrew.com/weblog/articles/cbs-events
http://www.quirksmode.org/js/this.html
http://www.quirksmode.org/js/this.html
http://www.quirksmode.org/blog/archives/2005/08/addevent_consid.html
http://www.quirksmode.org/blog/archives/2005/08/addevent_consid.html

Catching Up With addEvent()
B y R y a n C a m p b e l l

Treehouse
1 0

Dean Edwards Variation
Due to a desire to perfect event listeners, Dean Edwards took a different ap-
proach from John Resig. Instead of using browsers’ built-in methods, like attach-
Event(), custom functions were used to manage all of the events. Comments are
compliment of Dean himself.

function addEvent(element, type, handler) {

 // assign each event handler a unique ID

 if (!handler.$$guid) handler.$$guid = addEvent.guid++;

 // create a hash table of event types for the element

 if (!element.events) element.events = {};

 // create a hash table of event handlers for each element/event pair

 var handlers = element.events[type];

 if (!handlers) {

 handlers = element.events[type] = {};

 // store the existing event handler (if there is one)

 if (element[“on” + type]) {

 handlers[0] = element[“on” + type];

 }

 }

 // store the event handler in the hash table

 handlers[handler.$$guid] = handler;

 // assign a global event handler to do all the work

 element[“on” + type] = handleEvent;

};

Original addEvent()
Scott Andrew LePera’s original version of this function satisfies both browsers by
performing object detection, appending “on” to event names for Internet Explorer,
and sending useCapture to browsers that support it.

function addEvent(obj, evType, fn, useCapture){

 if (obj.addEventListener){

 obj.addEventListener(evType, fn, useCapture);

 return true;

 } else if (obj.attachEvent){

 var r = obj.attachEvent(“on”+evType, fn);

 return r;

 } else {

 alert(“Handler could not be attached”);

 }

}

Contest Winner
After QuirksMode held the addEvent() recoding contest, John Resig emerged as
the victor with his rendition of addEvent(), shown below. Maintains this keyword.

function addEvent(obj, type, fn)

{

 if (obj.addEventListener)

 obj.addEventListener(type, fn, false);

 else if (obj.attachEvent)

 {

 obj[“e”+type+fn] = fn;

 obj[type+fn] = function() { obj[“e”+type+fn](window.event); }

 obj.attachEvent(“on”+type, obj[type+fn]);

 }

}

addEvent Comparisons

Catching Up With addEvent()
B y R y a n C a m p b e l l

Treehouse
1 1

The display of the window object would be set
to none, not that of the element being clicked,
but that’s if Internet Explorer is being used.

Competition Forks Efforts

After Koch’s test case was analyzed and
deemed a problem that required solving, the
addEvent() Recoding Contest was launched
with Scott Andrew LePera, Dean Edwards
and Peter-Paul Koch as judges. This call to
arms challenged a wide audience to produce a
superior replacement to addEvent().

The competition produced two lines of think-
ing. The problem could be approached simi-
lar to the old addEvent(), where the keyword
this is maintained, but the code still adapts to
different browsers’ implementations. Or one
could handle management and firing events
through their own custom functions, and
completely ignore the methods browsers have
provided to attach events.

John Resig used the first approach and won
the contest. His solution, Flexible JavaScript
Events, is a 15-line function similar to the
original addEvent, but maintains this key-
word. While Resig’s submission was declared
the winner, it was generally accepted that the
ideal solution had not been found. In the quest
to find the ideal solution, one of the judges,
Dean Edwards, wrote a variation of the func-
tion using the second line of thinking – to ig-

nore the default browser methods and create
everything from scratch.

His solution solved certain problems with
Resig’s entry and worked in more browsers.
Tino Zijdel published an excellent summary
detailing the differences between the two ap-
proaches. Additionally, Tino has been work-
ing on the script with Dean and you can fol-
low their development on Tino’s and Dean’s
web sites.

Where To Go From Here

Right now, either script will do justice in its
current form. What’s nice about Resig’s script
is in how lightweight and elegant it is and al-
lows developers to use something a bit more
solid (since he won’t be releasing any more
versions in the foreseeable future). Edward’s
script, however, is attempting to solve the
various problems associated with Resig’s and
offers nice functionality, but it ’s still a work in
progress. Regardless of your choice, remem-
ber to stay educated about the implications of
your event-attaching implementations.

Ryan Campbell is a Treehouse editor and develops
software for Particletree Inc. He can’t seem to stop
running and showering, even when there’s a lot
of stuff to be done around the house and work.

y

YOU GOT A
MESSAGE?
WE GOT A
MEDIUM.

ADVERTISE IN
TREEHOUSE.

http://www.quirksmode.org/blog/archives/2005/09/addevent_recodi.html
http://jszen.blogspot.com/
http://dean.edwards.name/
http://www.quirksmode.org/
http://ejohn.org/
http://ejohn.org/projects/flexible-javascript-events/
http://ejohn.org/projects/flexible-javascript-events/
http://dean.edwards.name/weblog/2005/10/add-event/
http://dean.edwards.name/weblog/2005/10/add-event/
http://therealcrisp.xs4all.nl/upload/addEvent_discussion_summary.html
http://therealcrisp.xs4all.nl/upload/addEvent_dean.html
http://dean.edwards.name/weblog/2005/10/add-event2/
http://dean.edwards.name/weblog/2005/10/add-event2/
http://treehousemagazine.com/advertise/

